Sains Malaysiana 54(9)(2025): 2151-2160
http://doi.org/10.17576/jsm-2025-5409-04
Degradation Kinetics of the Physicochemical and
Phytochemical Properties of MD2 Pineapple Juice during Heat Treatment and
Storage
(Kinetik Degradasi Sifat Fisikokimia dan Fitokimia Jus Nanas MD2 semasa Rawatan dan Penyimpanan Haba)
SITI MARIAM A RANI1,2,
KHAIRUL FARIHAN KASIM1,3,*, LEE BOON-BENG1,3, NOR HIDAWATI
ELIAS1,3, MOHD KHAIRUL YA’KUB4 & NOOR-SOFFALINA
SOFIAN-SENG5
1Faculty of Chemical
Engineering & Technology, Universiti Malaysia
Perlis, 02010 Arau,
Perlis, Malaysia
2Kedah Matriculation College, 06010 Changloon,
Kedah, Malaysia
3Centre of Excellence for Biomass Utilisation, Universiti Malaysia Perlis, 02010 Arau, Perlis, Malaysia
4Smart KJ Food Industries (Asia) PLT, Bandar Amanjaya,
08000 Sungai Petani, Kedah, Malaysia
5Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
Received:
15 January 2025/Accepted: 8 August 2025
Abstract
Thermal processing is crucial for preserving fruit juice while
minimising nutritional loss. A comprehensive study of heat treatment and
storage effects on a popular pineapple hybrid, MD2, is required to enhance
juice marketability. This study examined the thermal degradation kinetics of
MD2 pineapple juice on the physicochemical and phytochemical properties by heat
treatment at different temperatures (40-90 °C for up to 150 min), and storage
conditions (-20, 1, 4, 7 and 27 °C). Physicochemical properties were determined
based on the total soluble solids (TSS) content and browning index (BI).
Meanwhile, phytochemical properties were evaluated on the pineapple juices’
vitamin C and protein contents. Results showed that TSS and BI remained
constant, while vitamin C and protein contents declined during the heat
treatment. Pineapple juices’ thermal degradation followed first-order kinetics,
with vitamin C degrading faster at higher rate constants (4.38 × 10³/min during
heat treatment and 6.23 × 10³/min during storage) as compared to protein
content (4.30 × 10³/min and 5.38 × 10³/min, respectively). These findings may
provide information for food manufacturers in optimising temperature and time
for preservation and safety of pineapple juice.
Keywords:
Degradation kinetics; physicochemical; phytochemical; storage; thermal
treatment
Abstrak
Pemprosesan termal adalah penting untuk memelihara jus buah-buahan sambil meminimumkan kehilangan nutrisi. Kajian menyeluruh tentang rawatan haba dan kesan penyimpanan pada hibrid nanas
yang popular, MD2 diperlukan untuk meningkatkan kebolehpasaran jus. Penyelidikan ini mengkaji kinetik degradasi haba jus nanas MD2 pada sifat fizikokimia dan fitokimia dengan rawatan haba pada suhu berbeza (40-90 ℃ sehingga 150 min) dan keadaan penyimpanan (-20, 1, 4, 7 dan 27 ℃). Sifat fizikokimia ditentukan berdasarkan kandungan jumlah pepejal larut (TSS) dan indeks keperangan (BI). Sementara itu, sifat fitokimia dinilai pada kandungan vitamin C dan protein jus nanas. Keputusan menunjukkan bahawa TSS dan BI kekal malar, manakala kandungan vitamin C dan protein menurun semasa rawatan haba. Degradasi haba jus nanas mengikuti kinetik urutan pertama dengan vitamin C merosot lebih cepat pada pemalar kadar yang lebih tinggi (4.38 × 10³/min semasa rawatan haba dan 6.23 × 10³/min semasa penyimpanan) berbanding kandungan protein (masing-masing 4.30 × 10³/min dan 5.38 ×
10³/min). Keputusan ini boleh memberi maklumat kepada pengeluar makanan dalam mengoptimumkan suhu dan masa untuk pemeliharaan dan keselamatan jus
nanas.
Kata kunci: Fitokimia; fizikokimia; kinetik degradasi; penyimpanan; rawatan haba
REFERENCES
Akyildiz, A., Mertoglu, T.S. & Agcam, E.
2021. Kinetic study for ascorbic acid degradation, hydroxymethylfurfural and furfural formations in Orange juice. Journal of
Food Composition and Analysis 102: 103996.
Ali, M., Yu, C., Thani, N.
& Uda, M. 2024. Suatu ulasan mengenai antioksidan, sifat fizikokimia, manfaat kesihatan dan pengendalian selepas tuai tomato ceri. Sains Malaysiana 53(4): 807-819.
Ali, M., Hashim, N., Abd
Aziz, S. & Lasekan, O. 2020. Pineapple (Ananas
comosus): A comprehensive review of nutritional values, volatile compounds,
health benefits, and potential food products. Food Research International 137: 109675.
de Lencastre Novaes, L.C.,
Jozala, A.F., Lopes, A.M., de Carvalho Santos-Ebinuma,
V., Mazzola, P.G. & Pessoa Junior, A. 2015. Stability, purification, and
applications of bromelain: A review. Biotechnol.
Prog. 32(1): 5-13.
Dhar, R., Bhalerao, P.P.
& Chakraborty, S. 2021. Formulation of a mixed fruit beverage using fuzzy
logic optimisation of sensory data and designing its batch thermal
pasteurisation process. Journal of Food Science 86(2): 463-474.
FAMA. 2019. Menuju ke Arah Kualiti Malaysia’s Best.
Fellows, P.J. 2017. Food
Processing Technology-Principles and Practice. Woodhead Publishing Series
in Food Science, Technology and Nutrition. Edisi ke-4. Woodhead Publishing: United Kingdom.
Fonteles, T.V., de Araújo Barroso,
M.K., de Godoy Alves Filho, E., Fernandes, F.A.N. & Rodrigues, S. 2021.
Ultrasound and ozone processing of cashew apple juice: effects of single and
combined processing on the juice quality and microbial stability. Processes 9(12): 2243.
Gonçalves, E.M., Raposo,
I., Pinheiro, J., Alegria, C., Moldão, M. &
Abreu, M. 2020. Quality changes during thermal processing of two mixed formulas
of fruits and vegetables pulps. Emirates Journal of Food and Agriculture 32(4): 271-280.
Gopalsamy, B., Latifah, S.
& Hamid, H. 2024. Mechanism of damnacanthal induced apoptosis in CEM-SS cell line. Sains Malaysiana 53(9): 3159-3171.
Hardinasinta, G., Salengke,
S., Juaedi, M. & Mursalim,
M. 2019. Ohmic heating characteristics and degradation kinetics of anthocyanin
in mulberry juice. IOP Conference Series: Earth and Environmental Science 355: 012094.
Hassan, M.M. & Joshi,
N. 2020. Hydrothermal effects on physicochemical, sensory attributes, vitamin
C, and antioxidant activity of frozen immature Dolichos lablab. Heliyon 6(1): e03136.
Hounhouigan, M.H., Linnemann, A.R., Soumanou, M.M. & Van Boekel, M.A.J.S. 2014. Effect of
processing on the quality of pineapple juice. Food Reviews International 30(2): 112-133.
Lan, T., Bao, S., Wang,
J., Ge, Q., Zhang, H., Yang, W., Sun, X. & Ma, T. 2021. Shelf life of
non-industrial fresh mango juice: Microbial safety, nutritional and sensory
characteristics. Food Bioscience 42: 101060.
Li, J., Zhang, C., Liu,
H., Liu, J. & Jiao, Z. 2020. Profiles of sugar and organic acid of fruit
juices: A comparative study and implication for authentication. Journal of
Food Quality 2020: 7236534.
Li, X., Siviroj, P., Ruangsuriya, J., Phanpong, C.
& Sirikul, W. 2022. Comparison of effects of
storage at different temperatures in a refrigerator, upright freezer on top of
refrigerator, and deep freezer on the immunoglobulin
a concentration and lysozyme activity of human milk. Int. J. Environ. Res.
Public Health. 19(20): 13203.
Makroo, H.A., Srivastava, B.
& Jabeen, A. 2022. Influence of mild electric field (MEF) on polyphenol
oxidase and quality attributes of pineapple juice during ohmic heating. LWT 156: 113021.
Mênouwesso, H.H., Anita, R.L.,
Mohamed, M.S. & Martinus, A.J.S.V.B. 2020. Effect of heat treatment on
yeast inactivation, vitamin C and physicochemical quality of fresh pineapple
juice. African Journal of Food Science 14(8): 256-264.
Omotoyinbo, O.V. & Sanni, D.M.
2017. Characterisation of bromelain from parts of three different pineapple
varieties in Nigeria. American Journal of BioScience 5(3): 35.
Pipliya, S., Kumar, S. &
Srivastav, P.P. 2024. Impact of cold plasma and thermal treatment on the
storage stability and shelf-life of pineapple juice: A comprehensive
postharvest quality assessment. Food Physics 1: 100025.
Rashima, R., Maizura, M., Wan Nur Hafzan, W.M. & Hazzeman,
H. 2019. Physicochemical properties and sensory acceptability of pineapples of
different varieties and stages of maturity. Food Research 3(5): 491-500.
Roslan, J., Ling, H.C., Sintang, M.D. & Saallah, S.
2020. Effect of Heat Treatment on Rheological Properties of Bambangan (Mangifera Pajang Kosterm)
Fruit Juice. Advances in Agricultural and Food Research Journal 1(2):
a0000115.
Sarkis, J.R., Jaeschke,
D.P., Mercali, G.D., Tessaro, I.C. & Marczak,
L.D.F. 2019. Degradation kinetics of anthocyanins in blackberry pulp during
ohmic and conventional heating. International Food Research Journal 26(1): 87-97.
Sasongko, H., Muslimah, I.,
Ningsih, S. & Sutarno. 2024. Combined
anti-diabetic and wound healing effects of binahung leaf (Basella rubra L.) and snakehead fish (Channa striata)
extracts in alloxan -induced high-fat diet rats. Sains Malaysiana 53(9): 3149-3158.
Sattar, S., Ahmad, T.,
Nisa, M., Imran, M., Holmes, M., Maycock, J., Nadeem, M. & Khan, M.K. 2019.
Microwave processing impact on physicochemical and bioactive attributes of
optimized peach functional beverage. Journal of Food Processing and
Preservation 43(7): 1-9.
Shourove, J.H., Zzaman, W., Chowdhury, R.S. & Hoque, M.M. 2020. Effect
of thermal treatment on physicochemical stability and antioxidant properties of
locally available underutilized star fruit juice. Asian Food Science Journal 14(3): 41-53.
Souza, P.B.A., Poltronieri, K.F., Alvarenga, V.O., Granato, D., Rodriguez,
A.D.D., Sant’Ana, A.S. & Peña, W.E.L. 2017. Modeling of Byssochamys nivea and Neosartorya fischeri inactivation in papaya
and pineapple juices as a function of temperature and soluble solids content. LWT 82: 90-95.
Szczepańska, J.,
Pinto, C.A., Skąpska, S., Saraiva, J.A. &
Marszałek, K. 2021. Effect of static and multi-pulsed high-pressure
processing on the rheological properties, microbial and physicochemical
quality, and antioxidant potential of apple juice during refrigerated storage. LWT 150: 112038.
Vollmer, K., Chakraborty,
S., Bhalerao, P.P., Carle, R., Frank, J. & Steingass, C.B. 2020. Effect of
pulsed light treatment on natural microbiota, enzyme activity, and
phytochemical composition of pineapple (Ananas comosus [L.] Merr.) juice. Food and Bioprocess Technology 13(7):
1095-1109.
Zaini, A., Palaniandy, A., Ismail, M., Zaini, N. & Thani, N. 2024. Penghasilan lipid kaya asid dokosaheksaenoik (DHA) oleh Aurantiochytrium sp. SW1 menggunakan sisa kulit nanas sebagai punca karbon alternatif. Sains Malaysiana 53(10): 3405-3416.
*Corresponding author; email:
khairulfarihan@unimap.edu.my